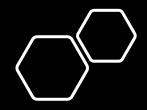
On the Road to Reducing Information Asymmetries from Black-Box Evidence: A Conceptual Introduction to Machine Learning for Lawyers

> Nitin Kohli PhD Candidate, UC Berkeley School of Information Email: <u>nitin.kohli@ischool.berkeley.edu</u> February 17, 2021

A (very quick) conceptual introduction to supervised machine learning



age	gender	Top_genre	Avg_app_time	like_ke\$ha
13-17	М	рор	190	0
13-17	М	rb	12	1
18-24	F	jazz	34	1
55-64	М	rb	98	0
45-54	0	punk	12	1
13-17	F	rock	14	1
13-17	F	рор	17	0
18-24	F	рор	87	0
65+	М	electronic	91	0
45-54	0	edm	367	1

FeaturesTargets

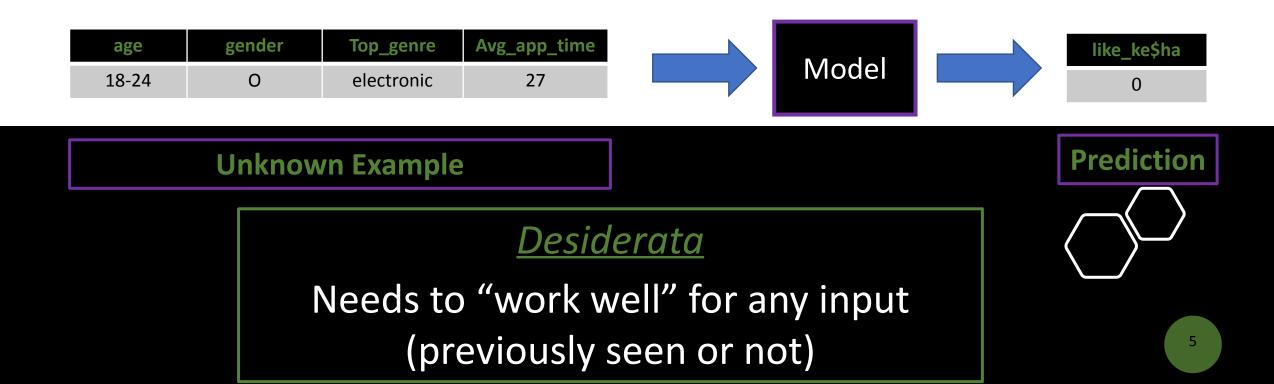
	<u>Goal</u>
Predict "like	_ke\$ha" from data

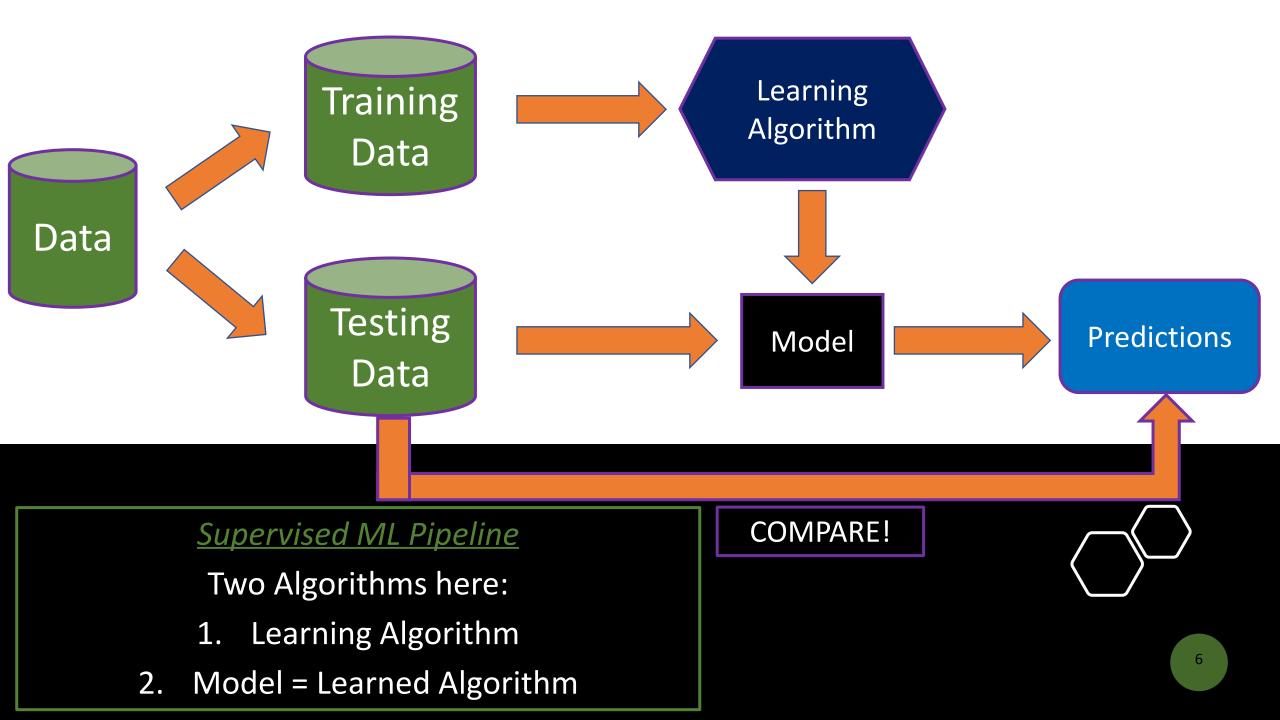
age	gender	Top_genre	Avg_app_time			
13-17	М	рор	190			
13-17	М	rb	12			
18-24	F	jazz	34			
55-64	М	rb	98		l	
45-54	0	punk	12			
13-17	F	rock	14	Model		
13-17	F	рор	17			
18-24	F	рор	87			
65+	М	electronic	91			
45-54	0	edm	367			
•••						
	Fea	atures				
<u>Goal</u>						
Predict "like_ke\$ha" from data						

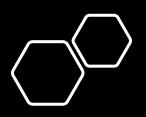
Targets

like_ke\$ha

•••







Problem Formulation Construct Validity and Poor Proxies

Operationalizing a concept with a proxy may not faithfully measure the phenomenon of interest.

How We Analyzed the COMPAS Recidivism Algorithm

by Jeff Larson, Surya Mattu, Lauren Kirchner and Julia Angwin May 23, 2016

TECHNOLOGY

A Popular Algorithm Is No Better at Predicting Crimes Than Random People

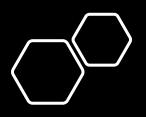
The COMPAS tool is widely used to assess a defendant's risk of committing more crimes, but a new study puts its usefulness into perspective.

ED YONG JAN 17, 2018

TECHNICAL FLAWS OF PRETRIAL RISK ASSESSMENTS RAISE GRAVE CONCERNS

Some risk assessments <u>define public safety risk</u> more narrowly as the risk that a <u>person will be arrested</u> for a violent crime while on pretrial release. But because pretrial violence is exceedingly rare, it is challenging to statistically predict. Risk assessments cannot identify people who are more likely than not to commit a violent crime. The fact is, the vast majority of even the highest risk individuals will not go on to be arrested for a violent crime while awaiting trial. Consider the dataset used to build the Public Safety Assessment (PSA): <u>92% of the people</u> who were flagged for pretrial violence did not get arrested for a violent crime and <u>98%</u> of the people who were not flagged did not get arrested for a violent crime.

<u>Problem Formulation</u>
Construct Validity and
Poor Proxies



Input Data Systematic Issues in Underlying Data Collection

Total Crime

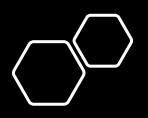
Observed + Unobserved Crime

Observed Crime

>

>

Reported & Observed Crime



Input Data Systematic Issues in Underlying Data Collection

This is math, not magic.

"Data science tools" cannot allow us to generalize to this level (absent major additional assumptions)

Real Datasets Live Here

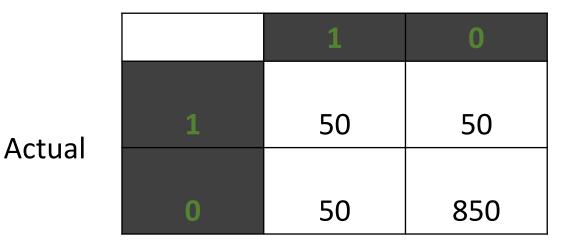
Rachel Thomas

@math_rachel

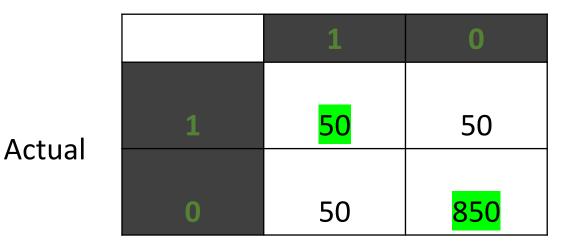
If we don't want the future to look like the past, we can't just unthinkingly apply machine learning. – Nitin Kohli

2:26 PM - 7 Mar 2019

Predicted

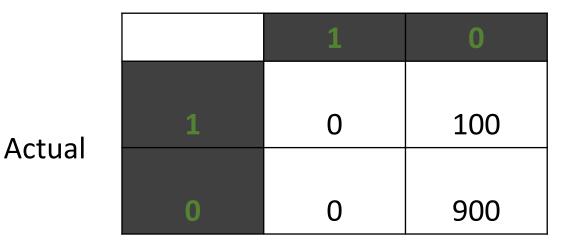


Predicted

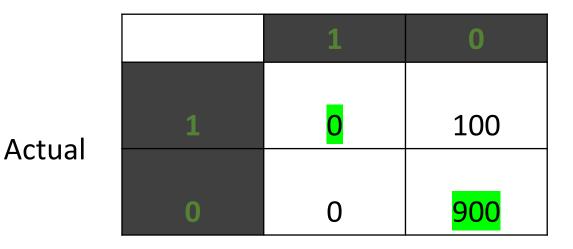


Accuracy = Percentage correct = (50 + 850) / (1000) = 90%

Predicted

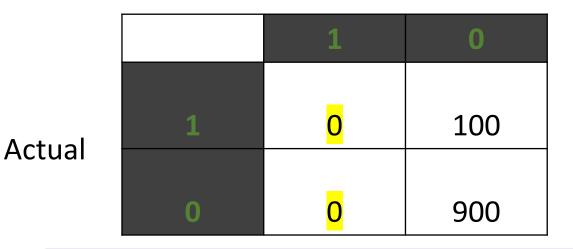


Predicted

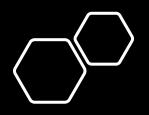


Accuracy = Percentage correct = (0 + 900) / (1000) = 90%

Predicted

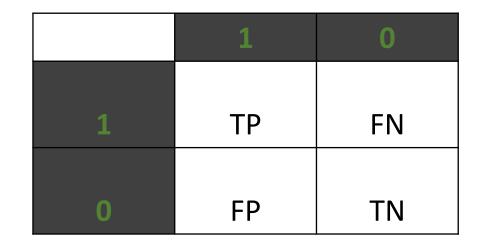


But this model is practically useless because it never predicts 1! It always just predicts 0



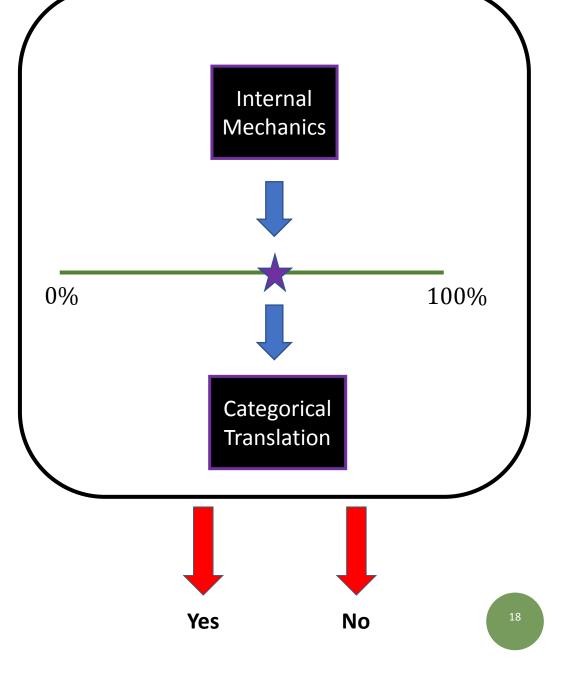
Error types matter! Accuracy alone can paint with too broad a brush.

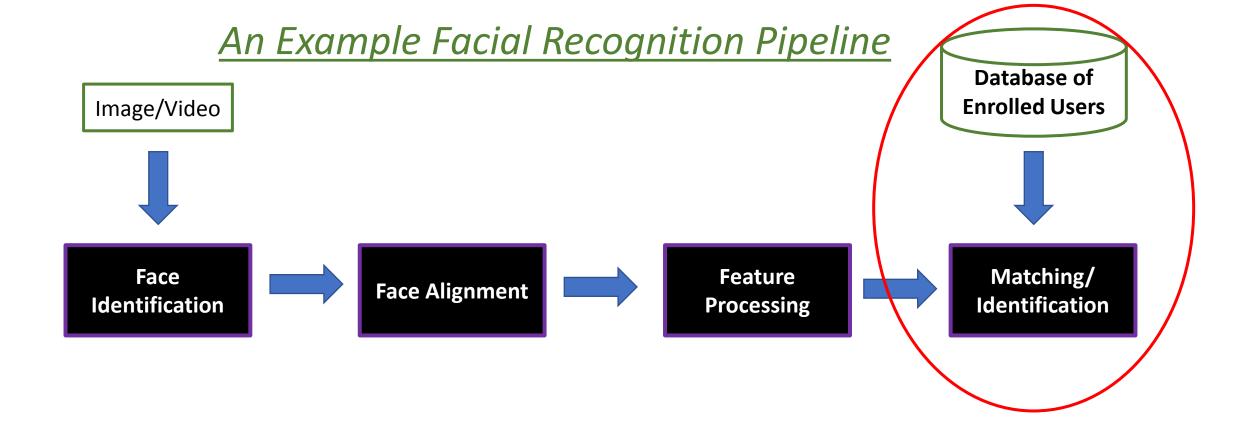
Predicted



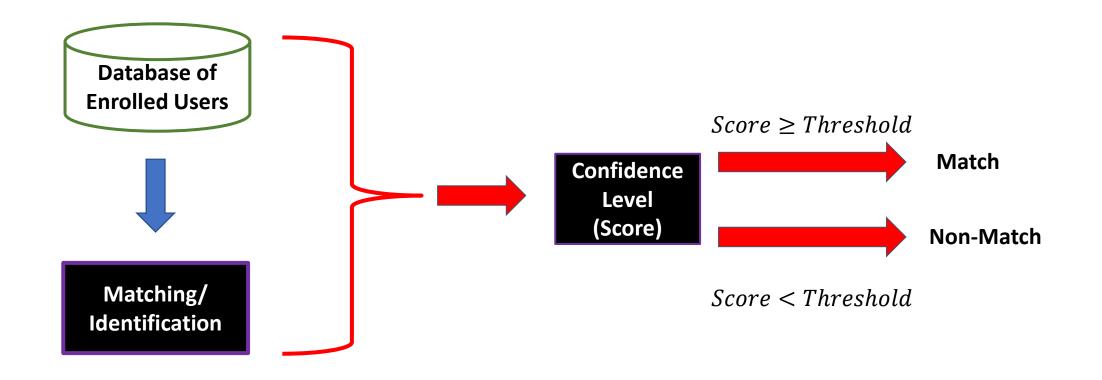
Actual

The Role of Thresholds For certain technologies, thresholds are needed to make categorical decisions

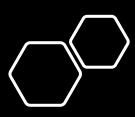




The Role of Thresholds For certain technologies, thresholds are needed to make categorical decisions



The Role of Thresholds For certain technologies, thresholds are needed to make categorical decisions These thresholds are policy decisions that tradeoff error types – they do not make the tech any smarter or dumber.



Discrimination Without Explicit Programming The fallacy of "fairness through unawareness"

Ignoring a sensitive attribute does not guarantee a model won't learn it through correlated features. Training Data w/o sensitive attribute X

Learning Algorithm

Model that learned X

Moral of the Story

Machine learning systems are fragile representations of the world they model

