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Needs to “work well” for any input
(previously seen or not)
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COMPARE! <:><:>

Two Algorithms here:
1. Learning Algorithm
2. Model = Learned Algorithm




How We Analyzed the
<:><:> COMPAS Recidivism Algorithm
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A Popular Algorithm Is No Better at Predicting Crimes
Than Random People
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The COM tool is widely used to assess a defendant’s risk of committing
l | | I y more crir but a new study puts its usefulness into perspective
ED YONG JANT7, 2018
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Arrested
Individuals

Operationalizing a concept with a
proxy may not faithfully measure
the phenomenon of interest.



TECHNICAL FLAWS OF PRETRIAL RISK
ASSESSMENTS RAISE GRAVE CONCERNS

Some risk assessments define public safety risk more narrowly as the risk that a person will be arrested
for a violent crime while on pretrial release. But because pretrial violence is exceedingly rare, it is
challenging to statistically predict. Risk assessments cannot identify people who are more likely than
not to commit a violent crime. The fact is, the vast majority of even the highest risk individuals will
not go on to be arrested for a violent crime while awaiting trial. Consider the dataset used to build the
Public Safety Assessment (PSA): 92% of the people who were flagged for pretrial violence did not get
arrested for a violent crime and 98% of the people who were not flagged did not get arrested for a
violent crime.* If these tools were calibrated to be as accurate as possible, then they would predict that

Construct Validity and <:><3

Poor Proxies




OO Total Crime

Systematic Issues in Observed + Unobserved Crime
Underlying Data >

Collection

Observed Crime
>

Reported & Observed Crime
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Systematic Issues in
Underlying Data
Collection

This is math, not magic.

“Data science tools” cannot allow us to generalize to

this level (absent major additional assumptions)

Reported &
Observed Crime

Real Datasets Live Here
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If we don’t want the future to look like

the past, we can’t just unthinkingly
apply machine learning. — Nitin Kohli
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How do we assess the
“correctness” of a
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How do we assess the
“correctness” of a
model? Actual

Predicted

Accuracy = Percentage correct
= (50 + 850) / (1000)
=90%
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How do we assess the
“correctness” of a
model? Actual

Predicted

But this model is practically useless
because it never predicts 1!
It always just predicts O
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How do we assess the
“correctness” of a

model?

Error types matter!
Accuracy alone can paint
with too broad a brush.
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For certain technologies,
thresholds are needed to
make categorical decisions
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An Example Facial Recognition Pipeline

Database of
Enrolled Users

Matching/
Identification

Image/Video

Face - Face Alignment ‘ Feature
Identification 8 Processing

For certain technologies,

thresholds are needed to
make categorical decisions




Database of

Enrolled Users
Score = Threshold

Confidence Mo U

Level

— )
CON mmmmm—) Non-Match

Matching/ Score < Threshold
Identification
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These thresholds are policy
decisions that tradeoff error O
types — they do not make <:>
the tech any smarter or
dumber.

For certain technologies,

thresholds are needed to
make categorical decisions




Training
Data w/o
sensitive

attribute X
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Learning
Algorithm

The fallacy of
“fairness through

unawareness” Model

that
learned X

Ignoring a sensitive attribute
does not guarantee a model
won’t learn it through
correlated features.



Machine learning systems are fragile
representations of the world they model
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