Automated Face Recognition

Arun Ross Professor Michigan State University

http://iprobe.cse.msu.edu/

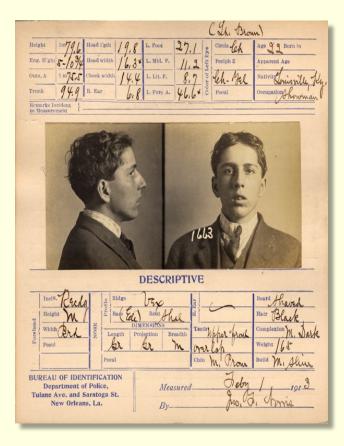
The iPRoBe Lab

http://iprobe.cse.msu.edu

https://twitter.com/iPRoBeLab

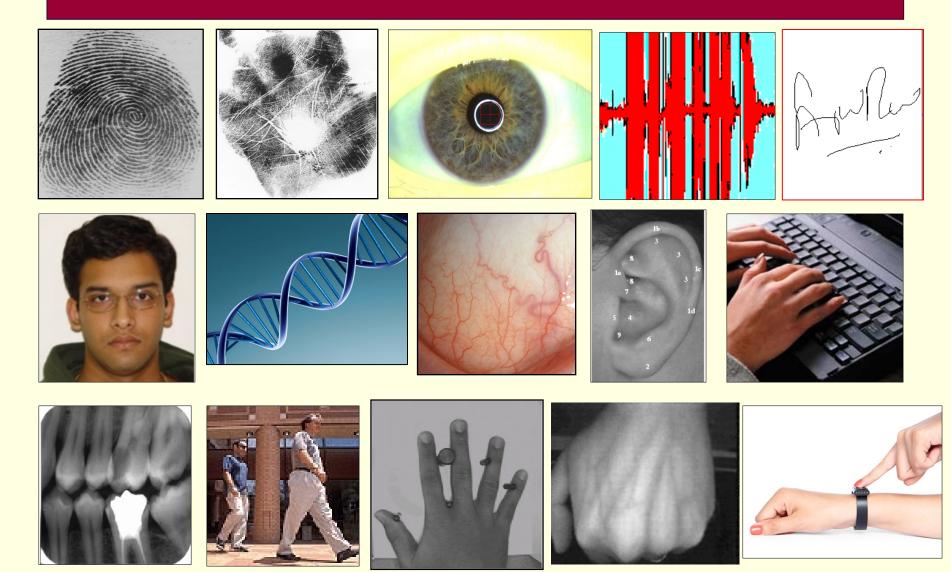
- Integrated Pattern Recognition and Biometrics Lab
- Currently: 8 PhD Students + 2 Post-Docs +1 UG Student
- Graduated: 24 MS Thesis Students + 8 PhD Students

Research Theme


- Adversarial Biometrics
 - Spoofing Biometric Traits
 - Digitally Altered Biometric Data
 - Degraded Biometric Data
- Ethics and Privacy
 - What Else Does Your Biometric Data Reveal?
 - Privacy Preserving Biometrics
- Biometric Fusion
 - Multiple Biometrics
 - Multispectral Biometrics
 - Biometrics + Demographics + Spoof Detector + Quality

Related Resources

- A. K. Jain and A. Ross, "<u>Bridging the Gap: From Biometrics to</u> <u>Forensics</u>," Philosophical Transactions of The Royal Society B, Vol. 370, Issue 1674, August 2015.
- A. K. Jain, K. Nandakumar, A. Ross, "<u>50 Years of Biometric</u> <u>Research: Accomplishments, Challenges, and Opportunities</u>," Pattern Recognition Letters, Vol. 79, pp. 80 - 105, August 2016.
- A. Ross, S. Banerjee, C. Chen, A. Chowdhury, V. Mirjalili, R. Sharma, T. Swearingen and S. Yadav, "<u>Some Research Problems in Biometrics:</u> <u>The Future Beckons</u>," Proc. of 12th IAPR International Conference on Biometrics (ICB), (Crete, Greece), June 2019.
- A. K. Jain, B. Klare, A. Ross, "<u>Guidelines for Best Practices in</u> <u>Biometrics Research</u>," Proc. of 8th IAPR International Conference on Biometrics (ICB), (Phuket, Thailand), May 2015.


Biometrics

- Automated recognition of individuals based on their biological and behavioral characteristics
- Traits from which distinguishing, repeatable features can be extracted

Page: 5

Biometric Traits

Page: 6

Biometric Applications

Iris: Health Care

Fingerprint: Refugee Services

Fingerprint: US OBIM

Face: Apple Face ID

Finger Vein: Japan ATMs

Automated Face Recognition

- Given two face images, estimate two numbers:
 - the likelihood that they are of the same person
 - the likelihood that they are of different people

Components of a Biometric System

- **Sensor**: To acquire face image
- Feature extractor: To extract a set of discriminative features from the image
- Matcher: To compare two extracted feature sets
- Database: To store face templates of individuals

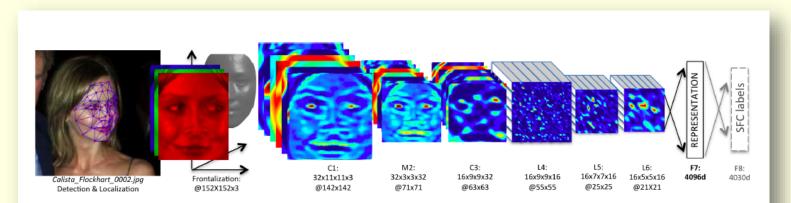
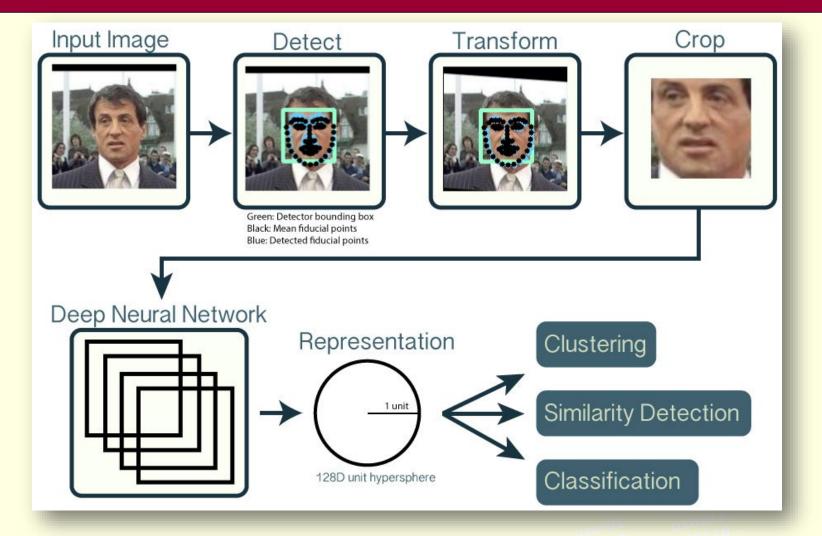
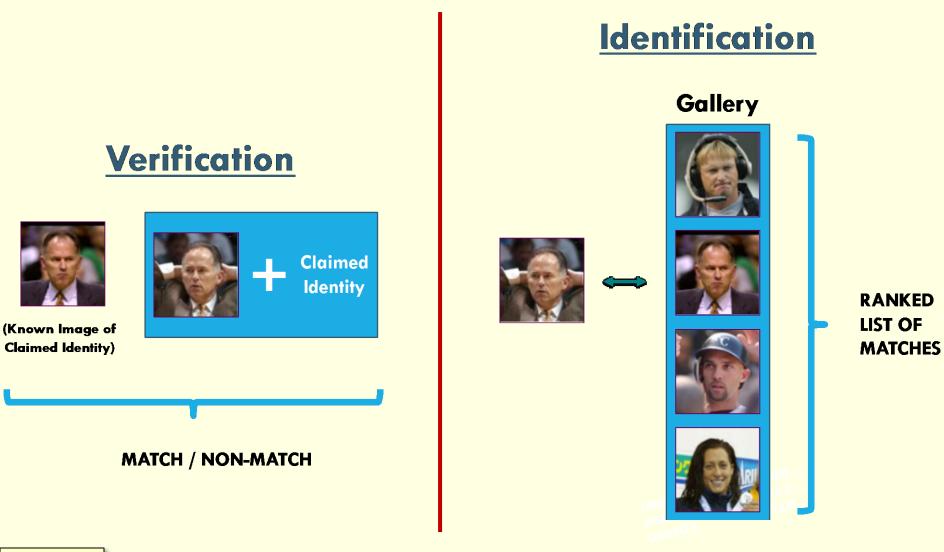
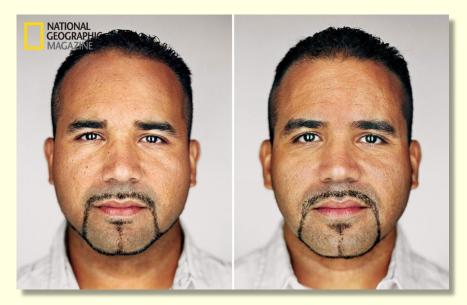



Figure 2. Outline of the *DeepFace* architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate outputs for each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.


Deep Neural Networks

© https://cmusatyalab.github.io/openface/

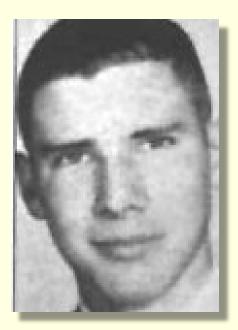
Verification vs Identification

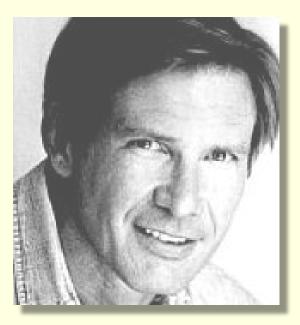

Page: 11

Intra-user variations

FNMR: False Non-Match Rate (False Negative)

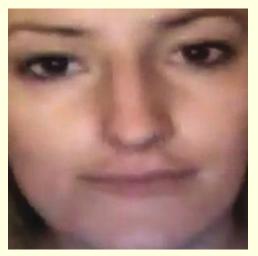
Inter-user similarity




MOTHER DAUGHTER © PleasantonWeekly.Com

FMR: False Match Rate (False Positive)

Impact of Ageing



Impact of Cosmetics

Cosmetics: To spoof another person's face image

Before-makeup

After-makeup

Target identity

Rank 734 → Rank 1 [13,334 gallery images]

Chen et al, "Spoofing Faces Using Makeup: An Investigative Study", ISBA 2017

FRVT: Verification Scenarios

Images from: NIST 2019 Report Ongoing Face Recognition Vendor Test (FRVT) Part 1: Verification Patrick Grother, Mei Ngan, Kayee Hanaoka

FRVT: Identification Scenarios

Unconstrained Faces

Surveillance and Access Systems

Profile Faces

Surveillance and Transactional Systems

Mugshot Images

Law Enforcement and Passport Type of Applications

Webcam Images

Immigration and Transactional Systems

Images from: NIST 2019 Report Ongoing Face Recognition Vendor Test (FRVT) Part 2: Identification Patrick Grother, Mei Ngan, Kayee Hanaoka

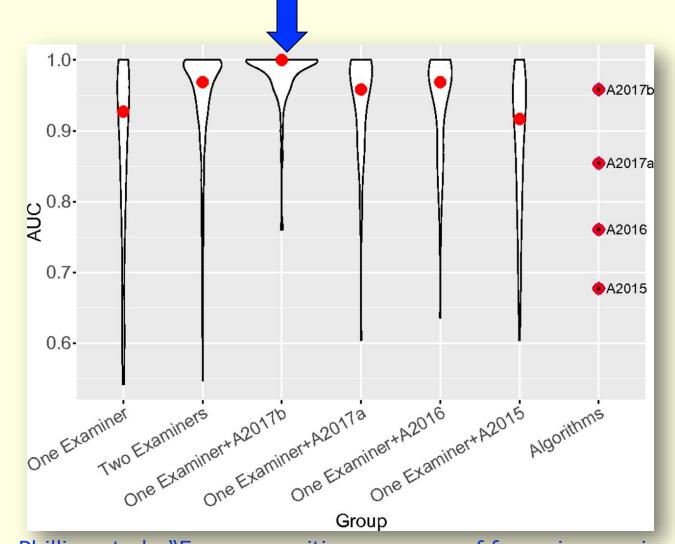
Search Scenario

Error Rates on a 12M Face Image Search Database

Algorithm	Error Rates FNIR @ FPIR = 0.001	Template Size Bytes	Memory Requirements GB	Search Speed* milliseconds
NEC	0.058	1712	20.5	697
Paravision	0.106	4096	49.2	1417
RankOne	0.116	165	2.0	393
Innovatrics	0.142	1076	12.9	414
Microsoft	0.154	1024	12.3	2312
Idemia	0.166	528	6.3	880
Cognitec	0.184	2052	24.6	2088
Neurotechnology	0.214	2048	24.6	1604
Toshiba	0.214	1548	18.6	7250
Cogent	0.224	1043	12.5	3131
Aware	0.264	3100	37.2	924

* Search time includes template generation and search speed

FNIR = False Negative Identification Rate FPIR = False Positive Identification Rate



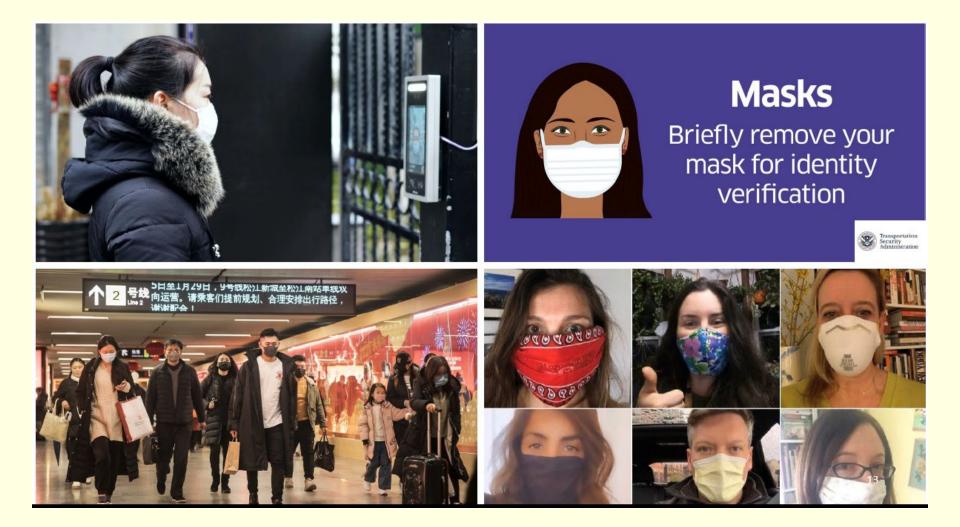
Humans versus Computers

- "We present data comparing state-of-the-art face recognition technology with the best human face identifiers"
- "The best machine performed in the range of the best humans: professional facial examiners"
- "However, optimal face identification was achieved only when humans and machines worked in collaboration"

Phillips et al., "Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms", PNAS 2018

Humans + Computers

Phillips et al., "Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms", PNAS 2018


NIST Evaluation

 "Between 2014 and 2018, facial recognition software got 20 times better at searching a database to find a matching photograph, according to the National Institute of Standards and Technology's (NIST) evaluation of 127 software algorithms from 39 different developers—the bulk of the industry"

Please also see Grother *et al.*, "Ongoing Face Recognition Vendor Test (FRVT) Part 2: Identification," NISTIR 8238, 2018

Novel Challenge

Summary

- Performance of face recognition has improved considerably over the past decade
- Face recognition systems must be used in conjunction with human examiners/reviewers as well as other pieces of evidence
- Factors impacting performance:
 - Quality of probe and gallery images
 - Face recognition algorithm that was used
 - Size and composition of the database

Automated Face Recognition

Arun Ross Professor Michigan State University

http://iprobe.cse.msu.edu/